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We shall consider a semi-infinite combustion chamber into which
the fuel, mixed at a temperature T, is supplied at a constant mass
rate m from one end, It is assumed that a first-order exothermic re-
action takes place in the mixture within the chamber. In the absence
of heat losses through the walls, the stationary combustion problem can
be reduced to the fellowing boundary-value problem:
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where T is the temperature, a is the concentration of the fuel, k =

= Kk({T) is the thermal conductivity, D = D({T) is the diffusion coef-
ficient, p = p(T) is the density of the mixture, ¢ is the {constant) spe-
cific heat, his the heat of reaction, @ = &(T) is the rate of the chem-
ical reaction, and T is the temperature of the gas reached when the
fuel has been completely consumed (the unknown quantity),

A similar problem was formulated in [1] where a quantitative
analysis was given of combustion in a semi-infinite chamber, and the
corresponding equations were investigated for the case of similarity
between the conceniration and temperature fields, (A = pDc/k = 1),
oD,c,k are constants and ¢(T) was an Arrhenius type function. One-di-
mensional combustion in an infinite gas was discussed in [2-6], In the
‘most general case [4] this reduces 10 Eq. (1) for which, instead of the
boundary conditions at the end, these conditions are set at infinity,
and Ty = T3Is known, Assuming that @(T)=0, T, =T =& (> Ty)
and @(T) > 0,& < T = T4% it was shown that when A =1, A =0, and
0< NT) < 1, stationary combusition is possible and unique for only
one value m = m* of the mass velocity for a given gas, It was shownin
[7] that it was possible to construct functions MT) and h@(T) for which
‘there is no solution of the corresponding boundary-value problem, at
least for two values of m,

Below we shall use methods similar to those employed in [2-6] to
show that in the semi-infinite combustion chamber, and for arbitrary
but smooth functions k(T), D(T), (T}, and &(T) satisfying the con-
ditions
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the stationary combustion process exists and is unique for Ty > € and
any rate of supply of the fuel mixture, but for T, < & this occurs only
for m = m*,

We shall use the following dimensionless variables and combina-
tions;
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where L = m7/pg (7 is the characteristic reaction time), and y*is the
maximum possible value of y corresponding to combustion in an
infinite gas (no heat losses through the end).

The problem defined by Eqs, (1) and (2) now becomes
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From Eq. (5) and the boundary conditions at infinity we have
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If we take u as the independent variable, and v and p = «du/d &
as the unknown functions and, moreover, if we replace the second
equation in Eq, (6) by the integral of Eq. (7), then instead of Eqs, (5)
and (6) we have
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where Eq. (11) was obtained from the second condition in Eq. (6) using
Eq. (7).

The point u =1, p=0, v =0 is a singularity, Three pairs of
integral curves pass through it, two of which give p < 0 which is in
conflict with Eq. (11), The remaining curves have slopes

ap el 1= Vi—9MmA(y)

(d_“—)uzl =h= FINT)) .

dv ]ﬁ(i'—lﬁ)
(o) == 2o, M@ D
hh=—9®) h=h—1 Ay =0. (12)

These curves define the unique solution p(u,y), v(u, y) of the problem
specified by Eqs, (8)~(10) for any 0= y =< ¥* It remains to determine
the existence of values y = y° for which Eq. (11) is satisfied.

Suppose that T, > €, We then have from Egs. (3) and (4)
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where the subscript y indicates a partial derivative with respect 1o y.
We shall show that, in this case,

0L p<Coo, 0ol oo OCull, (14)

If p and v, which according to Bq. (12) are positive in the left-
hand neighborhood of u =1, were to intersect the u~axis for 0 = u <
< 1, then the point u® would lie in this interval at which either p=0,
v=0, dp/du=0, orv =0, p> 0, dv/du = 0, ItfollowsfromEgs. (8)
and (9) that such a point cannot exist and, therefore, p and v are finite.
Let us establish the following preliminary inequalities:

Hn=v+u-—1>0, = v+t yu~q1—pg<0, (15)
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Differentiating the expressions for zj (i = 1, 2) term by term and
using Eqs. (8)-(10), we obtain
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If we regard Eq. (16) as the equation for zy(u, y) with known p and
v, and Eq. (17) as the boundary conditions for it, then in the case of A
equal and not equal to zero in the range (4, 1), the solution of the
problem specified by Eqs. (16) and (17) will be
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The validity of Eq. (18) follows from Egs. (3), (14), and (15).
We shall now show that

Py 0 2,20, 0<u <ty py, v, >0, u=0. (19)

These inequalities are satisfied in the neighborhood of u = 1 since
py=vy= 0, dpy/du =dk,/dy < 0, dv},/du =0, u=1in accordance
with Egs. (10), (12), (13), and (3). If the inequalities given by (19)
are subsequently violated, then we could find a point 0 < u® < 1, where
either py =0, vy =0, dpy/du 20, orvy <0, py=0, dvy/du = o,

On the other hand, from Eq. (8) and (9) we have
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and hence using Eq, (3), (13), (14), and (15), we readily see that the
above point u® cannot exist,

From the inequalities given by (19) and (14) it follows that p(0, y)
does not decrease as vy varies from zero to y*, and remains finite and
positive everywhere, At the same time, the required value of p of
Eq. (11) decreases monotonically from infinity to zero, There will be,
therefore, one and only one value of y° for which these quantities will
be equal, Therefore, in the case of the problem defined by Egs. (8)-
(11) there is a unique solution p(u, y°), v(u, y°) for any m. It is
readily seen that the funcrions u(f) and v(€ ) are the solution of the
problem of Egs, (5) and (6) and are also unique,

Suppose now that Ty < €, i.e.,

=0, o<u<sln (6=

1To

The inequalities given by (13), (14), and (19) are then satisfied for
§<u<1]and Pyhu =5 = 0, Moreover, it can be shown in a similar
way that 9p/0m = pp, < 0, vy =0, & =u < 1, According to Eq. (8),
dpy/du = dpm/du =0, 0 =u =4 and therefore

Py 20, pn<{0, u=0. (21)

It follows from the theory of combustion in an infinite gas [2-6]
that the value y° = y* will ensure a solution of the problem defined by
Egs.. (8)—(11) for m = m*, According to Egs. (21) and (11), the value
of y° will be unique for m = m*, For m < m* the quantity p(0,y*)
will be positive in view of Eq. (21), and negative for m > m*, There-
fore, according to Eqs. (21) and (11), as y decreases for m < m*there
will be a unique value y°® < y* for which Eq, (11) will be again sat-
isfied, but no such value will exist for m > m* We note that when
m =m?* there is no heat loss through the end, since p(G,7*) =0 and,
consequently, the flame will be at infinity, With decreasing m the
quantity p(0, y°) will increase, i.e,, the flame will increasingly ap-
proach the end,

We note that both for one-dimensional combustion in an infinite
gas and in the present case it is convenient to replace m by the Peclet
mumber P =1/c. The results are quite similar. Thus, in the combus-
tion chamber which we are considering, and for the above assumptions,
the stationary combustion state exists and is unique for any Pr when
T, > ¢, and only for Py = P4 when T, < & (P} is the Peclet number for
which unique stationary combustion in an infinite gas is possible).

In conclusion, I should iike to thank Yu, S. Ryazantsev for valuable
suggestions,
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