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We shall  consider a s e m i - i n f i n i t e  combust ion chamber  into which 
the fuel, m ixed  at a t empera ture  To, is supplied at  a constant  mass 

ra te  m from one end. It is assumed tha t  a f irst-order exo the rmie  re-  

ac t ion  takes  p lace  in the mix tu re  wi thin  the chamber .  In the absence 

of hea t  losses through the walls,  the s ta t ionary combust ion problem can  

be reduced to the fol lowing boundary -va lue  problem:  

d [kdT  ~ dT 
d-~ ~ -g;  } - -  'nc -37~ + ha r = O' 

d [ da \ da 
~pD -~x) - -m ~ - -  a(D = O, (1) 

da 
x = 0 ,  T =  To, ma--pD'-d~ =mao,  

x = c ~ ,  T = T + ,  a = 0 ,  (2) 

where T is the tempera ture ,  a is the concent ra t ion  of the  fuel,  k = 

= k(T)  is the  t h e r m a l  conduct iv i ty ,  D = D(T) is the diffusion coef-  
f ic ient ,  p = p(T) is the densi ty of the mixture ,  c is the (constant) spe- 

c i f ic  heat ,  h is the heat  of react ion,  # = ~ (T)  is the rate of the chem-  

i ca l  react ion,  and T+ is the t empera tu re  of the gas reached when the 

fuel  has been c o m p l e t e l y  consumed (the unknown quanti ty) .  

A s imi l a r  problem was formula ted  in [1] where a quan t i t a t ive  

analysis  was g iven  of combust ion in a s e m i - i n f i n i t e  chamber,  and the 

corresponding equat ions were inves t iga ted  for the case of s imi la r i ty  

be tween  the concent ra t ion  and t empera tu re  fields, (X = p D c / k  = 1), 

pD, c, k are constants and o (T)  was an Arrhenius type funct ion.  One -d i -  
mens ional  combust ion in an inf in i te  gas was discussed in [2-6] .  In the 

mos t  genera l  case [4] this  reduces to Eq. (1) for which,  instead of the 

boundary condit ions at  the end, these condit ions are set at inf ini ty,  

and T+ = T $ i s k n o w n .  Assuming tha t  @(T) -= 0, T O ~ T - < e  ( e >  To) 

and ~ (T)  > 0, e < T -< T+*, i t  was shown that  when k m  1, k=-  0, and 

0 < X(T) < 1, s ta t ionary combus i t ion  is possibIe and unique for only 

one value  m = m':' of the mass ve loc i ty  for a g iven  gas. It was shownin 

[7] that  i t  was possible to construct functions ~ T )  and h~(T)  for which 

t h e r e  is no solut ion of the corresponding boundary -va lue  problem, at 

leas t  for two values of m. 
Below we shal l  use methods s imi i a r  to those employed  in [2 -6 ]  to 

show tha t  in the s emi - in f in i t e  combust ion chamber ,  and for arbitrary 

but smooth functions k(T), D(T), p(T), and g>(T) sat isfying the con-  

dit ions 

= 3-2-<O,  

d~ d ( o D ) .  
k , O , P ,  dT , ~ ~ u ,  r o < m < T + ,  

d(D 
~3 , -~ -~>0 ,  8 < T ~ T §  ( e ~ 0 ) ;  q ) ~ 0 ,  T < 8 ,  (3) 

the s ta t ionary combust ion process exists and is unique for To > e and 

any rate  of supply of the fuel mixture ,  but for To < e this occurs only 

for m <~ m*. 
We shal l  use the fol lowing dimensionless  var iables  and combina -  

tions: 

T -- To ah :~ T+ -- To 
u = "~To ' v -- ~;cTo ' ~ =--L ' ? -- T o ' 

. f , _  aoh k pD 
cTo a (~T)=  mc--Z ' P ( ~ )  = ,,~L ' 

(~)  = -~-' I (~';)= 0--~ ' (4) 

where L = mV/Po (v is the charac te r i s t i c  r eac t ion  t ime) ,  and ?,",'is the 

m a x i m u m  possible va lue  of ?  ̀corresponding to combust ion in an 

in f in i te  gas (no hea t  losses through ~he end). 

The problem defined by Eqs. (1) and (2) now becomes  

@_~(udu\  du ~) - ~ + v / =  o, 

d / dv \ dv 
(~) 

~ = ~ ,  u = t ,  v = 0 ;  

dv ?* r ~=o, ~ -~ -~<~=~  (6) 

From Eq. (5) and the boundary condit ions at  inf in i ty  we have  

d ~ de 
~ -d~ + ~ -j$ - v -- u + i = o . (7) 

If we take  u as the independent  var iable ,  and v and p = c~du/d 

as the unknown functions and, moreover,  i f  we rep lace  the second 
equat ion  in Eq. (5) by the in tegra l  of Eq. (7), then  instead of gqs. (5) 

and (6) we have  

dp vq~ (u,;) (~ = fc~) (8) a-7 = ~ . - - - - 7 - -  

dv v + u - - t - - p  
du = ~ (u.;) p 

v = p - - u @ l ,  

, ~@o;  

) . = 0 ,  

u = l ,  p = 0 ,  v = O ,  

u = O ,  p=7"/7--i , 

(9) 

(io) 

(11) 

where Eq. (II) was obta ined from the second condi t ion  in Eq. (6) using 

Eq. (v). 
The point u : 1, p = 0, v = 0 is a s ingular i ty .  Three pairs of 

in tegra l  curves pass through it, two of which g ive  p < 0 which is in 

conf l ic t  with Eq. (11). The r ema in ing  curves have  slopes 

(~)u=i=ki= I -- ]/ I -- (P ('f) ~" (T) 

h (t -- k,) ( ad~Vu ),~-,  = k ~ =  (P ('r) ' ~(~)4=0 

h = - - ~ ( 7 ) ,  h = k ~ - - t ,  ; ~ ( 7 ) = 0 .  (12) 

These curves def ine the unique solut ion p(u,?`), v(u, 7/) of the problem 

speci f ied  by Eqs. (8) - (10)  for any 0 -< ?  ̀-< y:'. It remains  to de te rmine  

the ex i s t ence  of values  y = ?`~ for which Eq. (11) is satisfied.  

Suppose tha t  To > e. We then have  from Eqs. (3) and (4) 

cp>0, ~, < o ,  0 < u < i ;  

m~>0, (m~,)~=(/P).)>0, 0 < u ~ < i ,  (13) 

where the subscript  7 ind ica tes  a par t ia l  de r iva t ive  with respect ro y. 
We shal l  show that ,  in this case, 

0 < p < c o ,  0 . ~ v < C O ,  0 < u < t .  (14) 

If p and v, which accord ing  to Eq. (12) are posi t ive  in the lef t -  
hand neighborhood of u = 1, were to in tersec t  the u - ax i s  for 0 -< u < 

< 1, then the point  u ~ would l i e  in this in te rva l  at which e i ther  p = 0, 

v -> 0, dp /du  -> 0, or v = 0, p > 0, dv /du  >-- 0, I t fo l lows  fromEqs. (8) 

and (9) tha t  such a point  cannot  exis t  and, therefore,  p and v are f ini te .  

Let us es tabl ish  the fol lowing p re l iminary  inequa l i t i es :  

z l =  v - ~  u - - ~ . ) O ,  z ~ =  v-l-  U - - l - - p < O .  ' (15) 
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Differentiating the expressions for z i (i : 1, 2) term by term and 
using gqs. (8)-(10), we obtain 

- " '  ( 7-) - - ' ~ p  -FAi, ).4=0 Ax= ~.--t1, , A2= , (16) 

zl = ( 2 - - i )  p , ) ` =  0; z i =  0, u =  1. (17) 

If we regard Eq. (16) as the equation for zi(u, y) with known p and 
v, and Eq. (17) as the boundary conditions for it, then in the case of k 
equal and not equat to zero in the range (u, 1), the solution of the 
problem specified by Eqs. (16) and (17) will be 

= ( 2 - - i ) p ( u o , ' r ) e x p  ( - - S  ~)-- S A i e x p ( - -  S du~, 

U o :  t ,  if )` (ui7) =# O, u <  u 1 <  1, 

u o =  ul ~ if  )` (u17) 4= O, u - . < u l < u a  ~ ~.(ux~ (18) 

The validity of Eq. (18) follows from Eqs. (3), (14), and (15). 
We shall now show that 

p ~ > 0 ,  v ~ 0 ,  O < u < t ;  Px, %>~0, u = 0 .  (19) 

These inequalities are satisfied in the neighborhood of u = t since 
p y = v y = 0 ,  dpy/du =dkl/dy < 0, dvy/du~--0, u = l  in accordance 
with gqs. (10), (12), (13), and (3). If the inequalities given by (19) 
are subsequently violated, then we could find a point 0 < u ~ < 1, where 
e i t he rpy=0 ,  v y ~  0, dpy/du>- 0, OrVy< 0, py-> 0, dvy/du->o.  

On the other hand, from Eq. (8) and (9) we have 

dp-r q~ vT vtp. r 
d-F-=---b-%+Tc-v~-- p ' 

dv-r v-r zl z2 
d-~- ~p---Zyp~ P-r- x=ry)`,, )`4~0; 

%=P-r ,  ) ` = 0  , (20) 

and hence using Eq. (3), (1S), (14), and (15), we readily see that the 
above point u ~ cannot exist. 

From the inequalities given by (19) and (14) it follows that p(0, y) 
does not decrease as y varies from zero to y*, and remains finite and 
positive everywhere. At the same time, the required value of p of 
Eq. (11) decreases monotonically from infinity to zero. There will be, 
therefore, one and only one value of y~ for which these quantities will 
be equal  Therefore, in the case of the problem defined by Eqs. (8)-  
(11) there is a unique solution p(u, y~ v(u, y~ for any m. It is 
readily seen that the functions u(~ ) and vf{ ) are the solution of the 
problem of Eqs. (5) and (6) and are also unique. 

Suppose now that T O < e, i.e., 

t (,~9 ~0, o < , ~ ( ' r )  (a= ~-TQ 
'yTo /" 

The inequalities given by (13), (14), and (19) are then satisfied for 
6 < u < 1 and (Py)u -6- -> 0. Moreover, it can be shown inas imi Ia r  
way that 0p/Sm =pro < 0, Vm---0, 6 -<u  < 1. According to Eq. (8), 
dpy/du =dpm/du =0, 0--<u--<6 and therefore 

p-r >/O, pro<O, u = 0 .  (21) 

It follows from the theory of combustion in an infinite gas [2-6] 
that the value y~ = y* will ensure a solution of the problem defined by 
Eqs. (8)-(11) for m = m*. According to Eqs. (21) and (11), the value 
of y* will be unique for m = m*. For m < m* the quantity p(0,y*) 
will be positive in view of Eq. (21), and negative for m > m*. There- 
fore, according to Eqs. (21) and (11), as y decreases for m < m ' the re  
will be a unique vaIue y~ < y* for which Eq. (11) will be again sat- 
isfied, but no such value will exist for m > m*. We note that when 
m = m* there is no heat toss through the end, since p(0, 7") = O and, 
consequently, the flame will be at infinity. With decreasing m the 

quantity p(0, y~ will increase, i.e., the flame will increasingly ap- 
proach the end. 

We note that both for one-dimensional combustion in an infinite 
gas and in the present case it is convenient to replace m by the Peeler 
number PT = 1/a.  The results are quite similar. Thus, in the combus- 
tion chamber which we are considering, and for the above assumptions, 
the stationary combustion state exists and is unique for any PT when 
T O > s, and only for PT --< P~? when T O < e (P~. is the Peeler number for 
which unique stationary combustion in an infinite gas is possible). 

In conclusion, I should like to thank Yu. S. Ryazantsev for valuable 
suggestions. 
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